
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 30, 819-833 (2014)

819

Reduced Power Consumption via Fewer Memory Accesses
for Deep Packet Inspection*

HANSOO KIM1,2, YOUNGLOK KIM2 AND JU WOOK JANG2,+

1Digital Technology and Biometry Division
National Forensic Service

Yangcheongu, Seoul 158-707, Korea
2Electronic Engineering Department

Sogang University
Mapogu, Seoul 121-742, Korea

We propose a new mapping scheme for AC-DFA tries to be used in FPGA imple-

mentation of deep packet inspection (DPI). Our scheme greatly reduces number of
memory accesses which are responsible for most of the power consumption in DPI. We
vary strides in the construction of AC-DFA tries in such a way that the number of
memory accesses is minimized without increasing the memory space. Compared with the
state-of-the-art DPI architecture [3], our scheme shows 34% reduction in power con-
sumption and 14% reduction in memory space.

Keywords: intrusion detection, pattern matching, variable stride, deep packet inspection,
Snort

1. INTRODUCTION

Deep packet inspection (DPI, Snort [2] for example) has become one of the most
reliable and trustworthy systems to eliminate network threats such as viruses, malicious
packets and DDoS attempts. The functions of DPI systems rely on multi-pattern string
matching, which scans the input stream to find all occurrences of a predefined set of
string-based patterns [3].

Along with the considerations of speed and accuracy, the memory space and power
consumption required for the functioning of the DPI system is of significant concern.
The majority of the memory space and power consumption used for DPI is for multi-
pattern string matching [4, 5], hence a large amount of research on reducing the memory
space and power consumption is focused on string matching.

Caching with partitioning the patterns [17] and two-stage decomposing [18] reduce
the memory space, but they are less effective. A scalable architecture with pipelining [3]
remarkably reduces the memory space, but it results in large hardware usage with corre-
spondingly larger power consumption. Some hashing algorithm designs [4, 8, 14] have
increased speed and added efficiency to string searching, but problems remain regarding
the implementation cost and additional power consumption.

Many multi-pattern string matching solutions adopt the well-known Aho-Corasick
(AC) algorithm, where the system is modeled as a deterministic finite automaton (DFA)
[6]. Motivated by the these observations, we propose a new mapping scheme for pipeline

Received November 19, 2012; revised February 17, 2013; accepted March 4, 2013.
Communicated by Cho-Li Wang.
* This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea

government (MEST) (NRF-2013R1A1A2011856).
+ Corresponding author: jjang@sogang.ac.kr.

HANSOO KIM, YOUNGLOK KIM AND JU WOOK JANG

820

implementation which traverses an AC-DFA trie with varying strides depending on the
degrees of the nodes in such a way to minimize memory accesses. It is known that
memory accesses are responsible for most of the power consumption [5] in DPI systems.
Our main contribution can be summarized as follows. First we introduce formulas to
calculate the number of memory accesses as we change strides in traversing regular tries.
Second we use this formula to develop a heuristic algorithm to minimize the number of
accesses for all tries including irregular ones. To further reduce the number of memory
accesses, we also employ a binary search scheme to access the memory where the pat-
terns are located. As a result, our new mapping technique reduces power consumption
and memory space by 34% and 14% respectively when compared against the state-of-
the-art implementation [3].

The rest of this paper is organized as follows. Section 2 reviews multi-pattern string
matching and relevant recent studies, and Section 3 shows the proposed mapping scheme
which reduces power consumption. Section 4 shows the experimental results and Section
5 concludes this paper.

2. RELATED WORKS

2.1 Compression of an AC-DFA Trie with the Stride s

AC-DFA converts a pattern set which contains n characters into a deterministic fi-

nite automaton with O(n) states. Once the DFA which can be stored as a state transition
table is built, it reads the input stream one character per clock cycle. Each input character
is processed only once and results in exactly one state transition [3].

0 1

2

3

c

r

e

4

5

6

7

r

e

a

8

9

10

11

l

e

a

r

12

13

14

l

a

l

e

15
m

a

l

r
r

Fig. 1. An AC-DFA construction.

Fig. 1 illustrates a construction of AC-DFA for four patterns of “ell”, “cream”, “re-
al” and “ear” AC-DFA starts with constructing a trie (AC-trie) where the root is the de-
fault non-matching state. Each pattern to be matched adds a state to the trie, one state per
character, starting at the root and going to the end of the pattern [3]. This is called a goto
transition [6]. For example, the pattern “cell” adds states 1, 4, 8, and 12 as shown in Fig.
1. In case there is a mismatch in the goto transition, an additional transition is added
which is called a failure transition [7]. All states except states 4, 10 and 13 use the root
as default failure transition state. Some patterns share strings with other patterns. In this
case, failure transition can be made to other non-root state. This is illustrated in the fol-

REDUCED POWER CONSUMPTION FOR DEEP PACKET INSPECTION

821

lowing example. Patterns “real” and “ear” share a string “ea”. At state 10 in Fig. 1, if
input character “r” is encountered transition can be made to state 11 instead of the root
state. The goto transitions are called the forward transitions, and the failure transitions
are called the cross transitions. The forward transitions are denoted as solid lines with
arrows while dotted lines with arrows denote the cross transitions (The cross transitions
to the root state are not shown).

0

1

2

3

4

cr

re

ea

6

7

8

10

ll

ea

al

r

11
m

ce

r

5

ar

9

l

ar

Fig. 2. The compressed version of the AC-DFA construction in Fig. 1.

In addition to this, the compressed AC-DFA trie [10] has one transition on multiple
input characters, by combining k consecutive states of the original Aho-Corasick DFA
trie. The original AC-DFA trie can be compressed by dividing each pattern to be
matched into a certain number of characters, which is called a stride. As an example, Fig.
2 shows the compressed AC-DFA trie with a stride of 2, for the original AC-DFA trie
shown in Fig. 1. Two input characters are fetched at a time and compared against the
patterns on edges from the current node. If there is any match for these two input char-
acters, transition is made accordingly and the next two input characters are fetched. If
there is no match for these two input characters on any edges from the current node, then
next two input characters should be fetched with one-character offset to ensure that no
patterns are missed. Assuming that the input stream is “crear”, the first two input charac-
ters, “cr”, are read and compared against “ce”, “cr”, “re”, and “ea” in this order. Transi-
tion is made to node 2. And then next two input characters “ea” are fetched and com-
pared against “ea”. Since it is a match, transition is made to node 7. Finally “r” is fetched
and compared against “m” and “r”. Since this is a match for cross transition, node 10 is
reached. If input stream is “dreal”, the first two input characters, “dr”, are fetched and
compared against “ce”, “cr”, “re”, and “ea” in this order. No match. Two input characters
with one-character offset to the previous input characters (i.e. “re”) are fetched compared
against “ce”, “cr”, “re”, and “ea” in this order. Note that no patterns will be missed if we
use this one-character offset on no match for multiple input characters.

2.2 Removing Cross Transitions with Pipelining

Fig. 3 shows a mapping of the AC-DFA trie in Fig. 1 onto a pipeline with each level

to one stage. Using the aspect that the cross transitions are added into the AC-DFA trie
for a failed match in order to reuse the history information without restarting from the

HANSOO KIM, YOUNGLOK KIM AND JU WOOK JANG

822

root, Pao et al. [8] and Jiang et al. [3] deliver the input characters to all the pipeline
stages in parallel, including the new input characters to the root with a one character off-
set at each clock cycle so as to remove the cross transitions to the stages that are on the
pipelines. With this approach, all the cross transitions can be removed.

Suppose that the input stream is “crear” and at clock 1, the first input character “c”
is fetched to the root node and comparison is made against “c”, “r”, and “e” in order.
Match. Node 1 in stage 0 is reached and second input character, “r”, is fetched at clock 2.
At the same time, the character “r” is also fed to the root node in stage 0 to process an
input stream staring with “r”. In this way we process virtually multiple input streams,
“crear”, “rear”, “ear”, “ar”, and “r” simultaneously. The cross transition from 13 to 11
can be removed since node 11 is eventually reached while processing “ear”. Thus, the
memory space for storing these cross transitions is also removed.

0 1

2

3

c

r

e

4

5

6

7

r

e

a

8

9

10

11

l

e

a

r

12

13

14

l

a

l

e

15
m

a

l

r
r

Stage 1Stage 0 Stage 2 Stage 3 AC-remain

x x

x

Fig. 3. The pipelined AC-DFA.

2.3 Memory Accesses Responsible for Most of Power Consumption

For clarity, we define the following terms.

 s: the stride of an AC-DFA trie
 d: the degree of a node
 C: the alphabet size
 H: the height of an AC-DFA trie
 Msp(d, C, H): the memory space to store the patterns as a function of d, C and H of the

AC-DFA trie
 Mna(d, C, H): the number of memory accesses to fetch the patterns as a function of d,

C and H of the AC-DFA trie

The stride (s) of a node is defined to be the number of input characters to be matched

at a time in traversing an AC-DFA trie (see Section 2.1 for illustration). Compression of
the AC-DFA trie in Fig. 1 by increasing the stride to 2 is shown in Fig. 2. The depth of a
node M in a trie is the length of the path from the root of the trie to M. The height (H) of
a trie is the depth of the deepest node in the trie. All nodes of depth p are at level p in the
trie. The root is the only node at level 0, and its depth is 0. The degree (d) of a node is
defined as the number of outgoing edges [11]. The alphabet size (C) is the number of

REDUCED POWER CONSUMPTION FOR DEEP PACKET INSPECTION

823

different patterns (characters) that can be mapped onto an edge in an AC-DFA trie (in
bytes). For ASCII character set [1], the alphabet size would be 256 (one for each charac-
ter in the alphabet) [4].

It is known that memory accesses are responsible for most of the power consump-
tion in DPI systems, as much as 85% [5]. This implies that reducing the number of
memory accesses will greatly reduce the overall power consumption. Removing cross
transitions via pipelining [3, 8] eliminates memory space and memory accesses needed
for cross transitions. To further reduce power consumption, we propose to change stride
(degree of compression) in such a way to minimize number of memory accesses without
increase in memory space. We show effectiveness of our scheme in mathematical analy-
sis with regular AC-DFA tries. We introduce formulas to calculate the number of
memory accesses as we change strides in traversing the tries. Second we use this formula
to develop a heuristic algorithm to minimize the number of accesses for all tries includ-
ing irregular ones. To further reduce the number of memory accesses, we also employ a
binary search scheme to access the memory where the patterns are located. As a result,
our new mapping technique reduces power consumption and memory space by 34% and
14% respectively when compared against the state-of-the-art implementation [3].

3. PROPOSED ARCHITECTURE

The memory space and the number of memory accesses of an AC-DFA trie may
depend on d, C and H. It is not easy to derive formulas relating these parameters to the
memory space and the number of memory accesses for all possible AC-DFA tries.
Therefore, we first consider regular AC-DFA tries in which we assume that the degrees
of all the nodes are the same except the leaf nodes in the AC-DFA trie. We derive for-
mulas for these regular tries, and the formulas can be used to identify the impact of pa-
rameters on the memory space and the number of memory accesses. Then we use this
result to develop a mapping scheme to adjust strides in such a way to minimize the
number of memory accesses for all AC-DFA tries including irregular ones.

Fig. 4 shows the example of the AC-DFA trie in which the degrees of all the nodes
except the leaf nodes are the same, with d = 2. The parameters of the AC-DFA trie in Fig.
4 are as follows.

 the stride s = 1
 the degree of the nodes d = 2
 the alphabet size C = 256
 the height H = 4

3.1 Calculating the Memory Space Requirement for Regular Tries

We can obtain the memory space required to store all the patterns, by counting the

number of all the characters in the edges of the AC-DFA trie. In Fig. 4, the number of
characters in all the edges is 30 (characters).

The number of edges in level i for regular tries is calculated by di. With the alphabet
size C and the height H, the memory space can be written as a function of d, C and H.

HANSOO KIM, YOUNGLOK KIM AND JU WOOK JANG

824

1

3

4

7

8

9

10

15

17

16

18

20

22

19

21

g

h

i

j

c

d

o

p

q

r

s

t

u

v

2

5

6

11

12

13

14

23

25

24

26

28

30

27

29

k

l

m

n

e

f

w

x

y

z

0

1

2

3

0

a

b

Fig. 4. A regular AC-DFA trie with d = 2.

From this, we can derive Eq. (1) in bytes.

2 2
1

1 1 (1)
(, ,) log log ()

8 8 1

HH
i

i

d d
Msp d C H C d C bytes

d

 (1)

In Fig. 4, we have d = 2 and H = 4. Each edge has one alphabetic character which is

represented by an 8 bit ASCII code [1], which implies C = 256. With this, we can obtain
the memory space for Fig. 4, as shown in Eq. (2).

4

2
1

1
(2, 256, 4) log 256 2 2 4 8 16 30()

8
i

i

Msp bytes

 (2)

Meanwhile, Fig. 5 shows the example of the compressed AC-DFA trie from the

original AC-DFA trie in Fig. 4. The following values are obtained for Fig. 5.

 the stride s = 2
 the degree of the nodes d = 4
 the alphabet size C = 2562

(two ASCII characters in one edge)
 the height H = 2

Using Eq. (1), we can get the memory space in Fig. 5 as shown in Eq. (3).

2
2 2

2
1

1
(4,256 ,2) log 256 4 2 (4 16) 40()

8
i

i

Msp bytes

 (3)

REDUCED POWER CONSUMPTION FOR DEEP PACKET INSPECTION

825

1

2

5

7

6

8

10

12

9

11

ac

go

3

4

13

15

14

16

18

20

17

19

0

ad

be

bf

gp
hq
hr

is
it
ju
jv

kw
kx
ly
lz

m0
m1
n2
n3

Fig. 5. A compressed AC-DFA trie from Fig. 4.

1

d

f

0

a

c

2

3

b

5

4

6

e

g

i

8

7

9

h

j

l

11

10

12

k

m

o

14

13

15

n

p

r

29

28

30

q

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 6. A regular AC-DFA trie with d = 3.

Fig. 6 shows another example of regular AC-DFA tries, where the degree of the
nodes d = 3. In Fig. 6, d = 3, H = 4 and C = 256. We can apply these parameters to Eq.
(1) and obtain the memory space of Fig. 6, as shown in Eq. (4).

4

2
1

1
(3,256,4) log 256 3 3 9 27 81 120()

8
i

i

Msp bytes

 (4)

HANSOO KIM, YOUNGLOK KIM AND JU WOOK JANG

826

3.2 Calculating the Average Number of Memory Accesses for Regular Tries

We can obtain the number of memory accesses to fetch the required patterns, by

summing the probability of accessing the edge of the AC-DFA trie to fetch the patterns
assigned to that edge. Considering Fig. 4, we can obtain the number of memory accesses
as follows.

At level 0 in Fig. 4, the probability of accessing the first edge with ‘a’ is 1, for all
the input characters should be compared to the first character on the first edge. The pro-
bability of accessing the second edge with ‘b’ is the probability of mismatch at the first
edge with ‘a’, so it is (C 1)/C = 255/256. Assuming all characters are equally probable,
we estimate the average number of memory accesses at level 0 as 1 + 255/256 = 1.996.

At level 1, the probability of accessing the first edge with ‘c’ equals the probability
of matching ‘a’ at level 0, so it is 1/C = 1/256. The probability of accessing the second
edge ‘d’ equals the probability of matching ‘a’ at level 0 times the probability of mis-
match at the first edge ‘c’, so it is 1/C * (C 1)/C = 1/256 * 255/256. Likewise, the
probability of accessing the third edge ‘e’ is 1/256, and the probability of accessing the
fourth edge ‘f’ is 1/256 * 255/256. The number of memory accesses at level 1 is esti-
mated as 2/256 * (1 + 255/256) = 2/256 * 1.996.

At level 2, the probability of accessing the first edge ‘g’ equals the probability of
matching ‘a’ at level 0 times the probability of matching ‘c’ at level 1, so it is 1/C * 1/C
= 1/2562. The probability of accessing the second edge ‘h’ equals the probability of
matching ‘a’ at level 0 times the probability of matching ‘c’ at level 1 times the probabil-
ity of mismatching at the first edge ‘g’, so it is 1/2562 * 255/256. By using similar calcu-
lation for the rest of edges, we can obtain that the number of memory accesses at level 2
is 4/2562 * (1 + 255/256) = 4/2562 * 1.996.

At level 3, the probability of accessing the first edge ‘o’ equals the probability of
matching ‘a’ at level 0 times the probability of matching ‘c’ at level 1 times the probabil-
ity of matching ‘g’ at level 2, which is 1/2563. The probability of accessing the second
edge ‘p’ equals the probability of matching ‘a’ at level 0 times the probability of match-
ing ‘c’ at level 1 times the probability of matching ‘h’ at level 2 times the probability of
mismatching at the first edge ‘g’, so it is 1/2563 * 255/256. Likewise, we can obtain that
the number of memory accesses at level 3 is 8/2563 * (1 + 255/256) = 8/2563 * 1.996.
Finally we can obtain the total number of memory accesses as 1.996 + 2/256 * 1.996 +
4/2562 * 1.996 + 8/2563 * 1.996, which is approximately 2.021.

Generalizing this with d, C and H for regular tries, the number of memory accesses
can be represented with a function of d, C and H as shown in Eq. (5).

0 1 2 1

0 1 2 1

1 1

1
1 0

(, ,) ()

1 2 (1)
()

H

H

iH d

i
i j

d d d d
Mna d C H ...

C C C C

C C C C d d C j
...

C C C C CC

 (5)

Assuming C = 256 and d << C, we can approximate Eq. (5) as follows.

1

0

1 0 996 0 992 (for small)
d

j

C j
. . d d

C

 (6)

REDUCED POWER CONSUMPTION FOR DEEP PACKET INSPECTION

827

1 0 1 2 3

1 0 1 2 3
1

1
1

1 1

H

iH

i
i

d
d d d d d C

...
d dC C C C C
C C

 (for large H) (7)

With Eqs. (6) and (7), we can obtain Eq. (8).

1 1

1
1 0

1
(, ,)

1

iH d

i
i j

d C j C d
Mna d C H d

dC C dC
C

 (8)

By using Eq. (8), the number of memory accesses for Fig. 4 can be obtained as in
Eq. (9).

256 2

(2,256,4) 2 016
256 2

Mna .

 (9)

Note that this is close to the value obtained in the above (2.021).
Also, we can obtain the number of memory accesses of the compressed AC-DFA

trie shown in Fig. 5. At level 0, the probability of accessing the first edge ‘ac’ is 1 and
the second edge ‘ad’ is the probability of mismatching at the first edge ‘ac’, (C 1)/C =
(2562 1)/2562. The probability of accessing the third edge ‘be’ is the probability of
mismatching at the first and the second edges, (C 2)/C = (2562 2)/2562. The probabil-
ity of accessing the fourth edge ‘bf’ is the probability of mismatching at the first, the
second and the third edges, (C 3)/C = (2562 3)/2562. Continuing in this manner, we
obtain the total number of memory accesses as 3.998.

Using Eq. (8), the number of memory accesses in Fig. 5 can be obtained as in Eq.
(10) with similar value.

2

2
2

256 4
(4,256 ,2) 4 000

256 4
Mna .

 (10)

Considering the examples in Figs. 4 and 5, we can state that d, C and H of the com-
pressed AC-DFA trie with the stride s are equal to d1

s, C1
s and H1/s respectively, where

d1, C1 and H1 are the parameters of the original AC-DFA trie.
In addition, the number of memory accesses in Fig. 6 can be obtained by summing

the expected number of accesses to all edges, which is approximately 2.9883 + 0.0350 +
0.0004 + 0.0001 = 3.024. The number of memory accesses in Fig. 6 using Eq. (8) is
shown in Eq. (11).

256 3

(3,256,4) 3 036
256 3

Mna .

 (11)

We see that the approximation (3.036) using Eq. (8) is very close to actual value
(3.024).

HANSOO KIM, YOUNGLOK KIM AND JU WOOK JANG

828

3.3 Determining the Strides of Irregular Tries

As seen so far, the memory space and the number of memory accesses depend on d,

C and H of the AC-DFA trie. In contrast to the fixed stride architecture [3], we change
the stride to minimize the number of memory accesses.

Since the actual AC-DFA trie may not be regular, we devise the following iterative
scheme. We map each level of the AC-DFA trie to a stage of a pipeline, to eliminate the
cross transitions as described in Section 2.2. Starting from the root of the original
AC-DFA trie, we keep compressing the trie as far as the number of memory accesses is
reduced by doing so. For this we do the following at current level starting from the root:
(1) Check if incrementing stride reduce the number of memory accesses. If so, increase
the stride at the current level by one (i.e. the next level will be combined into the current
level to be compressed) and go to (1). Otherwise, start a new stride with setting the next
level to current level and go to (2). (2) If the current level has no leaf nodes then stop.
Otherwise go to (1). The resulting compressed trie may have different strides for differ-
ent levels.

Step 1: Compare the number of memory accesses for the configuration in Fig. 7 (a) and
the configuration in Fig. 7 (b). In Fig. 7 (a), the number of memory accesses of level 0 is
2.988 and the number of memory accesses of level 1 is 0.016, so the number of memory
accesses for Fig. 7 (a) is 3.004. The number of memory accesses of level 0 for Fig. 7 (b)
is 3.999. We choose Fig. 7 (a) with stride = 1 for the first level since the number of
memory accesses is smaller.

0 1

2

3

c

r

e

4

5

6

7

r

e

a

8

9

10

11

l

e

a

r

12

13

14

l

a

l

e

15
m

Level 1Level 0 Level 2 Level 3 . . .

(a) Level 0 (root) and level 1 are not combined (stride = 1 at level 0).

0

ce
4

5

6

7

8

9

10

11

l

e

a

r

12

13

14

l

a

l

15
mcr

re

ea

Level 0 Level 1 Level 2 . . .

(b) Level 0 (root) and level 1 are combined together (stride = 2 at level 0).

Fig. 7. Checking if combining level 0 and level 1 reduce the number of memory accesses.

REDUCED POWER CONSUMPTION FOR DEEP PACKET INSPECTION

829

Step 2: Compare the number of memory accesses for the configuration in Fig. 8 (a) and
the configuration in Fig. 8 (b). In Fig. 8 (a), the number of memory accesses of level 1 is
0.01562 and the number of memory accesses of level 2 is less than 0.0001, so the num-
ber of memory accesses for Fig. 8 (a) is 0.01562. The number of memory accesses of
level 1 for Fig. 8 (b) is 0.01558. We choose Fig. 8 (b) with stride = 2 for the second level
since the number of memory accesses is smaller.

0 1

2

3

c

r

e

4

5

6

7

r

e

a

8

9

10

11

l

e

a

r

12

13

14

l

a

l

e

15
m

Level 1Level 0 Level 2 Level 3 . . .

(a) Level 1 and level 2 are not combined (stride = 1 at level 1).

0 1

2

3

c

r

e

8

9

10

11

12

13

14

l

a

l

el

15
mre

ea

ar

Level 1Level 0 Level 2 . . .

(b) Level 1 and level 2 are combined together (stride = 2 at level 1).

Fig. 8. Checking if combining level 1 and level 2 reduce the number of memory accesses.

Step 3: Continue in this manner until the last level of the original AC-DFA trie.
Table 1 shows the pseudo-code of the proposed algorithm, calculating the number

of memory accesses of each condition and determining the strides iteratively. For the
calculation, we define a part of the compressed AC-DFA trie and its properties as fol-
lows.

 P(a, b): a part of the compressed AC-DFA trie (nodes of one level and their edges,

compressed from level a to level b of the original AC-DFA trie)
 H: the height of the original AC-DFA trie
 G: the height of the compressed AC-DFA trie
 s(j) : the stride of jth level of the compressed AC-DFA trie
 Mna[P(a, b)]: the number of memory accesses of P(a, b)

HANSOO KIM, YOUNGLOK KIM AND JU WOOK JANG

830

Table 1. Pseudo-code.
Input: the original AC-DFA trie

 Otput: s(j), G
 str = 1, i = 0, j = 0
 while (i ≤ H 1)
 {
 if Mna[P(i, i + str)] + Mna[P(i + str, i + str + 1)] ≤ Mna[P (i, i + str + 1)]
 then s(j) = str, i += str, j++, str = 1
 else str++
 }
 G = j

4. EXPERIMENTAL RESULTS

Experiments on the ruleset from Snort [2], the well-known DPI system, are per-
formed. We construct the original AC-DFA trie from the content field text data of the
ruleset and apply our algorithm. The number of distinct rule sets is 610 and the con-
structed AC-DFA trie has a maximum of 150 levels (the largest ruleset has 150 charac-
ters) with a total of 6435 characters. We only consider the levels of the AC-DFA trie
which are the destinations of the cross transitions [3, 8], so the first 48 levels of the con-
structed AC-DFA trie are reconstructed using the proposed method shown in Section 3.3.
All AC-DFA tries are implemented, the memory space and the number of memory ac-
cesses are enumerated and the input data is randomly generated with Microsoft Visual
C++ 2008 and SystemC 2.2 [12].

Table 2. Performance evaluation on randomly generated data.

Architectures Stride
Memory Space

(bytes)
Number of Memory

Accesses
Total Power

Consumption (J)

Jiang et al. [3] 4 4236 104 827719.7
Jiang et al. [3] 8 4760 106 833617.9

Proposed variable 4089 11 556400.6

Table 3. Performance evaluation on an English text.

Architectures Stride
Memory Space

(bytes)
Number of Memory

Accesses
Total Power

Consumption (J)
Jiang et al. [3] 4 4236 1063 8510154.66
Jiang et al. [3] 8 4760 1094 8602322.40

Proposed variable 4089 94 5652954.72

We compare our architecture against that proposed by Jiang et al. [3] which uses
fixed strides on the compressed AC-DFA. In our experiment with the DDR3 DRAM [13]
in the commonly used DPI system, two input data are used and the power consumption is
estimated using the modified PowerSC [12, 15]. 32,768 characters are randomly gener-

REDUCED POWER CONSUMPTION FOR DEEP PACKET INSPECTION

831

ated and the English text of 341,362 characters (a text version of English Fairy Tales
from [16]) is used as the input data. The experimental results are shown in Table 2 and
Table 3. On randomly generated input data, our architecture reduces 14% of the memory
space, 89 % in the number of memory accesses and 34% of the power consumption
compared to the state-of-the-art architecture [3].

5. CONCLUSION

The proposed architecture reduce the memory power consumption by 34% and the
required memory space by 14%, on the Snort pattern set, compared against the state-of-
the-art architecture [3]. Our algorithm also shows that the varying strides depending on
the degree of the nodes with binary search scheme for patterns is effective in reducing
the memory space and the power consumption, for multi-pattern string matching such as
Snort, the well-known DPI system. We will extend our algorithm to other multi-pattern
string matching applications and power-aware systems in the future.

REFERENCES

1. ISO/IEC 8859-1, “Information technology 8-bit single-byte coded graphic charac-
ter sets Part 1: Latin alphabet No. 1,” International Standards Organization, April
1998.

2. “Snort: network intrusion detection system,” Sourcefire Inc., http://www.snort.org.
3. W. Jiang, Y. E. Yang, and V. K. Prasanna, “Scalable multi-pipeline architecture for

high performance multi-pattern string matching,” in Proceedings of IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2010, pp. 1-12.

4. N. Hua, H. Song, and T. V. Lakshman, “Variable-stride multi pattern matching for
scalable deep packet inspection,” in Proceedings of the 28th IEEE Conference on
Computer Communications, 2009, pp. 415-423.

5. W. Jiang and V. K. Prasanna, “Reducing dynamic power dissipation in pipelined
forwarding engines,” in Proceedings of the 27th IEEE International Conference on
Computer Design, 2009, pp. 144-149.

6. A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic
search,” Communications of the ACM, Vol. 18, 1975, pp. 333-340.

7. P.-C. Lin, Y.-D. Lin, T.-H. Lee, and Y.-C. Lai, “Using string matching for deep
packet inspection,” Computer, Vol. 41, 2008, pp. 23-28.

8. D. Pao, W. Lin, and B. Liu, “Pipelined architecture for multistring matching,”
Computer Architecture Letters, Vol. 7, 2008, pp. 33-36.

9. K. S. Kim and S. Sahni, “Efficient construction of pipelined multibit-trie router-ta-
bles,” IEEE Transactions on Computers, Vol. 56, 2007, pp. 32-43.

10. M. Alicherry, M. Muthuprasanna, and V. Kumar, “High speed pattern matching for
network IDS/IPS,” in Proceedings of IEEE International Conference on Network
Protocols, 2006, pp. 187-196.

11. C. A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis,
3rd ed., Prentice Hall, Upper Saddle River, NJ, 1997.

12. “Open systemC initiative,” Accellera Systems Initiative, http://www.accellera.org.

HANSOO KIM, YOUNGLOK KIM AND JU WOOK JANG

832

13. “Samsung consumer DRAM,” Samsung Electronics Co., Ltd., http://www.samsung.
com/global/business/semiconductor/product/consumer-dram/catalogue.

14. Y. Choi, E. Hong, T. Kim, S. Baek, I. Choi, and H. Oh, “A traffic pattern matching
hardware for a contents security system,” Magazine of the IEEK, Vol. 46, 2009, pp.
88-95.

15. F. Klein, G. Araujo, and R. Azevedo, “PowerSC: a SystemC framework for power
estimation,” 6th North American SystemC User’s Group Meeting, 2007.

16. “English fairy tales,” Joseph Jacobs Page, PSU’s Electronic Classics Site, http://www.
hn.psu.edu/faculty/jmanis/jimspdf.htm.

17. T. Song, W. Zhang, D. Wang, and Y. Xue, “A memory efficient multiple pattern
matching architecture for network security,” in Proceedings of the 27th IEEE Con-
ference on Computer Communications, 2008, pp. 166-170.

18. H. Chen, D. H. Summerville, and Y. Chen, “Two-stage decomposition of SNORT
rules towards efficient hardware implementation,” in Proceedings of the 7th Interna-
tional Workshop on Design of Reliable Communication Networks, 2009, pp. 166-170.

Hansoo Kim received the B.E. and M.E. degrees in Elec-
tronic Engineering from Sogang University, Korea, in 2002 and
2004, respectively. After that, he worked as a Junior Engineer at
the Digital Media Research Laboratory in LG Electronics until
2005, and as a Senior Engineer in Nextreaming Corp. until 2006.
He is currently a researcher and forensic expert in National
Forensic Service, Korea, and also a Ph.D. candidate in Electronic
Engineering from Sogang University. His research interest and
work experience include application-layer network protocols,
home networking, IPv6, multimedia streaming, digital forensics,
document analysis, Internet security and cybercrime.

Younglok Kim received B.S. degree in Electronic Engi-

neering from Sogang University, Seoul, Korea in 1991 and the
M.S. and Ph.D. degrees in Electrical Engineering from Polytech-
nic Institute of NYU, Brooklyn, NY in 1993 and 1998 respectively.
From 1999 to 2003, he was a Senior System Engineer at InterDig-
tal communication Corp. in Melville, NY working on 3GPP wire-
less systems. Since 2003, he joined the Department of Electronic
Engineering in Sogang University, where he is now a Professor.
His research interests include DSP algorithms, signal processing
for communication and radar.

REDUCED POWER CONSUMPTION FOR DEEP PACKET INSPECTION

833

Ju Wook Jang received the B.S. degree in Electronic En-
gineering from Seoul National University, Seoul, Korea, the M.S.
degree in Electrical Engineering from the Korea Advanced Insti-
tute of Science and Technology (KAIST), and the Ph.D. degree
in Electrical Engineering from the University of Southern Cali-
fornia (USC), Los Angeles, USA. From 1985 to 1988 and 1993
to 1994, he was with Samsung Electronics, Suwon, Korea, where
he was involved in the development of a 1.5-Mb/s video codec
and a parallel computer. Since 1995, he has been with Sogang
University, Seoul, Korea, where he is currently a Professor. His

current research interests include WiMAX protocols, mobile networks and next genera-
tion networks. He received LG Yonam overseas research grant in 2001. He has also built
systems for videoconferencing, streaming, home networks and ad hoc networks using
protocols like RTP, SIP, multicast, and IPv6.

